Chem. Ber. 107, 3275-3286 (1974)

Anwendungen der ¹³C-Resonanz-Spektroskopie, XVIII ^{1,2)}

Pteridin-Spektren, III

Ulrich Ewers, Harald Günther * und Lothar Jaenicke

Institut für Organische Chemie* und Institut für Biochemie der Universität Köln, D-5000 Köln, Zülpicher Straße 47

Eingegangen am 17. Mai 1974

Die 13 C-NMR-Spektren von Pterin (2-Amino-4-oxo-3,4-dihydropteridin, 1), Lumazin (2,4-Dioxo-1,2,3,4-tetrahydropteridin, 2), 7-Pterincarbonsäure (3) und 4-Oxo-3,4-dihydropteridin (4) wurden in saurer Lösung (CF₃CO₂H, 2 N H₂SO₄, FSO₃H) gemessen und zugeordnet. Aus den Protonierungsverschiebungen der 13 C-Resonanzen und den Änderungen der 13 C, 1 H-Kopplungskonstanten wurden die Strukturen der Mono- und Dikationen abgeleitet. Im Gegensatz zu früheren 1 H-NMR-Befunden sind die 13 C-Daten nur mit Zweitprotonierung an N-5 vereinbar. Die Bedeutung des $^{\Delta}$ E-Terms für die chemische Verschiebung der 13 C-Resonanz wird hervorgehoben.

Applications of ¹³C Resonance Spectroscopy, XVIII ^{1,2)} Pteridin Spectra, III

The 13 C n.m.r. spectra of pterine (2-amino-4-oxo-3,4-dihydropteridine, 1), lumazine (2,4-dioxo-1,2,3,4-tetrahydropteridine, 2), 7-pterine carboxylic acid (3) and 4-oxo-3,4-dihydropteridine (4) have been measured in acidic solution (CF₃CO₂H, 2 n H₂SO₄, FSO₃H) and assigned. The structure of the mono- and dications was derived from protonation shifts of the 13 C resonances and changes in the 13 C, 14 H coupling constants. Contrary to earlier 14 H n.m.r. based findings, the 13 C data are only compatible with the second protonation occurring at N-5. The importance of the $^{\Delta}E$ -term for the chemical shifts of 13 C resonances is stressed.

Die Schwerlöslichkeit der Pteridine macht ihre spektroskopische Untersuchung in neutralem Medium weitgehend unmöglich. Auch die ¹³C-NMR-Spektren dieser Systeme müssen daher überwiegend in alkalischem oder saurem Medium, in dem die Pteridine in deprotonierter bzw. protonierter Form vorliegen, gemessen werden. Über einige Messungen in neutraler Lösung und die ¹³C-NMR-Spektren von Pteridin-Anionen haben wir bereits in zwei Arbeiten berichtet^{3,4)}. In dieser Mitteilung sollen Ergebnisse für Pteridin-Kationen, wie man sie in Trifluoressigsäure (CF₃CO₂H), 2 N

¹⁾ XVII. Mitteil.: R. Wehner und H. Günther, Chem. Ber. 107, 3152 (1974).

²⁾ Auszugsweise vorgetragen von U. Ewers auf der Herbsttagung des Deutschen Arbeitskreises für Spektroskopie, Düsseldorf 11./12. 10. 1973.

³⁾ U. Ewers, H. Günther und L. Jaenicke, Chem. Ber. 106, 3951 (1973).

⁴⁾ U. Ewers, H. Günther und L. Jaenicke, Chem. Ber. 107, 876 (1974).

H₂SO₄, oder Fluorsulfonsäure (FSO₃H) erhält, behandelt werden. Ausführliche ¹H-NMR-Studien an diesen Systemen sind bisher von *v. Philipsborn* und Mitarbb. ⁵⁾ durchgeführt worden.

Ergebnisse

Die ¹³C-NMR-Daten von Pterin (2-Amino-4-oxo-3,4-dihydropteridin, 1), Lumazin (2,4-Dioxo-1,2,3,4-tetrahydropteridin, 2), 7-Pterin-carbonsäure (3) und 4-Oxo-3,4-dihydropteridin (4), die mit Hilfe der PFT-NMR-Spektroskopie⁶⁾ bestimmt wurden, sind in Tab. 1 zusammengestellt. Die Zuordnung der einzelnen Resonanzfrequenzen

gelang auf experimentellem Weg und durch Spektrenvergleich. Dabei konnten wir dank anderer spektroskopischer Befunde^{5,7-9)} davon ausgehen, daß 1 und 2 in CF₃CO₂H als Monokationen, in FSO₃H dagegen als Dikationen vorliegen.

Im Spektrum von 1[®] und 12[®] lassen sich die Resonanzen von C-6 und C-7 durch ein "off-resonance"-¹H-Entkopplungsexperiment¹⁰⁾ erkennen; $\delta(7) > \delta(6)$ wird dann in Analogie zum Anion 1⁽³⁾ nahegelegt und durch den Befund für 3²⁽⁶⁾ (vgl. unten) bestätigt. Von den vier quartären C-Atomen liefert C-9 infolge ³J(¹³C, ¹H)-Kopplung mit C(7)-H eine zusätzliche Dublettaufspaltung, so daß seine Resonanz von denen der Kohlenstoffatome 2 und 4 unterschieden werden kann 11). Auf dieses für die Zuordnung quartärer ¹³C-Resonanzen in Pteridinen wichtige Phänomen ist auch von anderer Seite hingewiesen worden 12,13). Früheren Ergebnissen 3) entsprechend wird $\delta(9)$ $\delta(10)$ gewählt, was ebenfalls durch den Befund für 3^{2} (vgl. unten) abgesichert werden kann. Die Resonanzen von C-2 und C-4 sind in 12[®] überlagert. In 1[®] (CF₃CO₂H) wird eines der beiden Signale durch die Lösungsmittelabsorption verdeckt, läßt sich jedoch in 1° (2 N H₂SO₄) bei 160.7 ppm messen. Die Zuordnung $\delta(2) < \delta(4)$ wählen wir in Analogie zu 4[®] (CF₃CO₂H), bei dem die Resonanzen von C-2 und C-4 im unentkoppelten ¹³C-Spektrum unterschieden werden können (vgl. unten). Wie bereits dargelegt³⁾, beeinflußt der Ersatz von H durch NH₂ den δ-Wert von C-2 in Pteridinen nicht signifikant. Die gewählte Zuordnung wird ferner durch die Daten unterstützt, die man für das Neutralmolekül 1 theoretisch aus den Daten der Folsäure3) und dem Vergleich 1^o/Folsäureanion³⁾ ableiten kann (Tab. 1). Danach werden bei der Protonierung im wesentlichen die Resonanzen von C-2 und C-9 diamagnetisch verschoben,

 ⁵⁾ A. Dieffenbacher und W. v. Philipsborn, Helv. Chim. Acta 52, 743 (1969); dort frühere Lit.
6) F. C. Farrar und E. D. Becker, Pulse and Fourier Transform NMR, Academic Press, New York 1971.

⁷⁾ W. Pfleiderer, E. Liedeck, R. Lohmann und M. Ruckwied, Chem. Ber. 93, 2015 (1960).

⁸⁾ A. Dieffenbacher, R. Mondelli und W. v. Philipsborn, Helv. Chim. Acta 49, 1355 (1966).

⁹⁾ E. Lippert und H. Prigge, Ber. Bunsenges. Phys. Chem. 64, 662 (1960).

¹⁰⁾ W. Bremser, Chemiker-Ztg. 97, 248, 259 (1973).

Wegen der kleineren 3J(C¹0,H6)-Kopplung kann eine zusätzliche Dublettaufspaltung für C-10 in der Regel nur im unentkoppelten ¹3C-NMR-Spektrum¹2,¹3) beobachtet werden.

¹²⁾ P. Birdsall, J. Feeney und P. Partington, J. C. S. Perkin II, 2145, 1973.

¹³⁾ G. Müller und W. v. Philipsborn, Helv. Chim. Acta 56, 2680 (1973).

Tab. 1. 13C-Resonanzfrequenzen (8TMS-Werte in ppm, vgl. exp. Teil) der Ionen von 1-4; Anionen-Daten nach I. c.2)

3 N NaOH Lonistering C-2 C-4 C-6 C-7 C-9 1 3 N NaOH — 165.0 173.9 139.1 149.1 157.2 Neutralmol.*) 0 157.9 162.8 141.6 151.6 156.3 CF3CO ₂ H + 152.2 — + 152.2 147.6 2 2 N KOH — 169.2 174.1 137.6 149.8 148.3 2 2 N KOH — — 169.2 174.1 137.6 149.0 158.9 CF3CO ₂ H + 151.2 161.4 141.3 150.5 148.7 FSO ₃ H + 152.7 154.9 137.2 157.5 149.0 3 FSO ₃ H + 151.2 158.9 136.7 155.8 150.9 4 3 N NaOH — 161.1 173.6 144.2 150.2 145.2 FSO ₃ H + + 152.8 158.2 147.4				ć	3	3	,	5	9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Solvens	Ionisierung	7-5	5	ڊ ر	ડે	3	25	
(a) 0 157.9 162.8 141.6 151.6 + 152.2 -b) 143.8 152.2 ++ 151.8 151.8 136.5 158.8 ++ 152.6 160.7 144.5 151.8 169.2 174.1 137.6 149.0 + 151.2 161.4 141.3 150.5 ++ 152.7 154.9 137.2 157.5 ++ 150.9 152.0 136.8 160.8 + 152.8 158.2 147.4 152.8 ++ 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0	-	3 N NaOH	I	165.0	173.9	139.1	149.1	157.2	130.7	
+ 152.2 -b) 143.8 152.2 ++ 151.8 151.8 156.5 158.8 ++ 152.6 160.7 144.5 151.8 169.2 174.1 137.6 149.0 ++ 151.2 161.4 141.3 150.5 ++ 152.7 154.9 137.2 157.5 ++ 150.9 152.0 136.8 160.8 - 161.1 173.6 144.2 150.2 + 152.8 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0		Neutralmol. a)	0	157.9	162.8	141.6	151.6	156.3	131.1	
++ 151.8 151.8 136.5 158.8 + 152.6 160.7 144.5 151.8 169.2 174.1 137.6 149.0 + 151.2 161.4 141.3 150.5 ++ 152.7 154.9 137.2 157.5 ++ 150.9 152.0 136.8 160.8 - 161.1 173.6 144.2 150.2 + 152.8 158.2 147.4 152.8 + 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0		CF_3CO_2H	+	152.2	Q !	143.8	152.2	147.6	126.6	
+ 152.6 160.7 144.5 151.8 169.2 174.1 137.6 149.0 + 151.2 161.4 141.3 150.5 ++ 152.7 154.9 137.2 157.5 ++ 150.9 152.0 136.8 160.8 - 161.1 173.6 144.2 150.2 + 155.8 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0		FSO ₃ H	++	151.8	151.8	136.5	158.8	149.8	116.0	
169.2 174.1 137.6 149.0 + 151.2 161.4 141.3 150.5 ++ 152.7 154.9 137.2 157.5 +/++ 151.3 158.9 136.7 155.8 ++ 150.9 152.0 136.8 160.8 - 161.1 173.6 144.2 150.2 + 152.8 158.2 147.4 152.8 + 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0		2 N H ₂ SO ₄	+	152.6	160.7	144.5	151.8	148.3	128.5	
+ 151.2 161.4 141.3 150.5 ++ 152.7 154.9 137.2 157.5 +/++ 151.3 158.9 136.7 155.8 ++ 150.9 152.0 136.8 160.8 - 161.1 173.6 144.2 150.2 + 152.8 158.2 147.4 152.8 + 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0	7	2 N KOH		169.2	174.1	137.6	149.0	158.9	129.8	
++ 152.7 154.9 137.2 157.5 +/++ 151.3 158.9 136.7 155.8 ++ 150.9 152.0 136.8 160.8 - 161.1 173.6 144.2 150.2 + 152.8 147.4 152.8 + 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0		CF3CO2H	+	151.2	161.4	141.3	150.5	148.7	126.0	
+/++ 151.3 158.9 136.7 155.8 ++ 150.9 152.0 136.8 160.8 - 161.1 173.6 144.2 150.2 + 152.8 147.4 152.8 ++ 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0		FSO ₃ H	++	152.7	154.9	137.2	157.5	149.0	118.2	
++ 150.9 152.0 136.8 160.8 - 161.1 173.6 144.2 150.2 + 152.8 158.2 147.4 152.8 ++ 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0		2 n H ₂ SO ₄	++/+	151.3	158.9	136.7	155.8	150.9	120.7	
- 161.1 173.6 144.2 150.2 + 152.8 158.2 147.4 152.8 ++ 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0	m	FSO ₃ H	++	150.9	152.0	136.8	160.8	149.5	119.2	CO ₂ H:153.4
+ 152.8 158.2 147.4 152.8 ++ 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0	4	3 N NaOH	1	161.1	173.6	144.2	150.2	155.0	132.8	
++ 156.1 150.3 141.0 159.7 + 152.7 161.2 148.4 153.0		CF_3CO_2H	+	152.8	158.2	147.4	152.8	147.1	132.0	
+ 152.7 161.2 148.4 153.0		FSO ₃ H	++	156.1	150.3	141.0	159.7	148.4	121.1	
		2 N H ₂ SO ₄	+	152.7	161.2	148.4	153.0	149.2	133.8	

a) Berechnete Werte. b) Von Lösungsmittelabsorption verdeckt.

wie es nach Befunden beim Pyridin ¹⁴⁾ und anderen sechsgliedrigen Stickstoffheterocyclen zu erwarten ist. Hier wurden Protonierungsverschiebungen von $\Delta\delta_{\alpha}=-7.8\pm0.7$, $\Delta\delta_{\beta}=+4.4\pm0.7$ und $\Delta\delta_{\gamma}=+12.7\pm0.9$ ppm gefunden ¹⁴⁾. Der Vergleich der δ -Werte für die Messungen in CF₃CO₂H und 2 N H₂SO₄ zeigt schließlich, daß 1 in den beiden Säuren als Monokation vorliegt.

Für die Lumazin-Kationen 2° und $2^{2^{\circ}}$ lassen "off-resonance"-1H-Entkopplung und ${}^3J({}^{13}C, {}^{1}H)$ -Kopplung wieder eine Differenzierung zwischen den drei Resonanzpaaren $\delta(2)$ und $\delta(4)$, $\delta(9)$ und $\delta(10)$, sowie $\delta(6)$ und $\delta(7)$ zu. Die Reihenfolge $\delta(9) > \delta(10)$ kann auch hier ohne Bedenken angenommen werden, ebenso wie die Relation $\delta(7) > \delta(6)$. Wir kommen auf diesen Punkt jedoch bei der Diskussion der Zweitprotonierung ausführlicher zurück.

Die Daten von 3 und 4 dienten uns hier im wesentlichen als Vergleichsinformation. 3 läßt sich nur in FSO₃H messen und dürfte daher als Dikation vorgelegen haben. Einzig C-6 zeigt hier im "off-resonance"-Spektrum ein Dublett infolge unmittelbarer ¹³C,¹H-Kopplung. Man findet ferner Dubletts infolge ³J(¹³C,¹H)-Kopplung für C-10 und C(7)-CO₂H, die beide mit C(6)-H koppeln. Die gegenüber 1²® nahezu unveränderte Lage aller ¹³C-Resonanzen entspricht dem Befund beim Verbindungs-

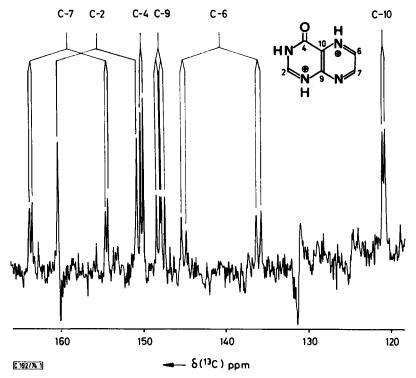
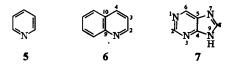


Abb. 1. PFT-13C-NMR-Spektrum von 4 in FSO₃H; Konz. 0.5 μ, δ_{TMS}-Skala (vgl. exp. Teil); 68 000 Akkumulationen

¹⁴⁾ R. J. Puginire und D. M. Grant, J. Amer. Chem. Soc. 90, 697 (1968).


paar Benzol/Benzoesäure 15), nach dem die Resonanzen der aromatischen Kohlenstoffatome durch die Einführung der Carboxylgruppe nur geringfügig beeinflußt werden.

Bei den Kationen von 4 gestattet das "off-resonance"-¹H-Entkopplungsexperiment zwischen $\delta(2)$, $\delta(6)$ und $\delta(7)$ einerseits sowie $\delta(4)$, $\delta(9)$ und $\delta(10)$ andererseits zu differenzieren. Ferner erscheint im unentkoppelten Spektrum die Resonanz von C-9 infolge vicinaler Kopplung mit C(6)-H und C(2)-H als Dublett von Dubletts (Abb. 1). Da $\delta(10)$ wieder bei höchstem Feld angenommen werden kann, ist auch $\delta(4)$ festgelegt. In Analogie zu den beim Monoanion von 4 beobachteten Verhältnissen³) wählen wir ferner auch für 4^{\oplus} $\delta(6) < \delta(7)$; $\delta(2)$ und $\delta(7)$ sind hier überlagert. In 2 n H₂SO₄ sowie bei Zweitprotonierung wird diese Entartung aufgehoben, und im unentkoppelten Spektrum des Dikations (Abb. 1) lassen sich beide Resonanzen auf Grund der für C-7 zusätzlich zu beobachtenden geminalen Kopplung mit C(6)-H eindeutig unterscheiden.

Diskussion

A) Die Struktur der Pteridin-Ionen

In Abb. 2 sind die Änderungen, denen die ¹³C-Resonanzen im Pterin beim Übergang vom Anion über das Neutralmolekül zum Kation und Dikation unterliegen, graphisch dargestellt. Es soll nun untersucht werden, welche Vorstellungen über die

Struktur der Ionen auf dieser Basis anhand der bekannten Befunde an anderen Stickstoff-Heterocyclen^{14,16-18)} entwickelt werden können. Zum Vergleich ziehen wir insbesondere Pyridin (5)¹⁴⁾, Chinolin (6)¹⁸⁾ und Purin (7)¹⁷⁾ heran, deren ¹³C-Daten in Abb. 3 graphisch dargestellt sind.

Geht man von den hypothetischen Resonanzfrequenzen des Neutralmoleküls 1 aus (vgl. oben), so führt die Deprotonierung in erster Linie zu paramagnetischen Verschiebungen der Resonanzen von C-2 und C-4. Die dem Ort der Deprotonierung (N-3) benachbarten Kohlenstoffatome werden also — im Einklang mit bekannten Befunden 14,16-18) — von der Strukturänderung am stärksten betroffen (Abb. 2).

Analoges gilt für die Bildung des Monokations in CF_3CO_2H oder 2 N H_2SO_4 . Hier kommt es zur Protonierung an N-1 und zu deutlichen Hochfeldverschiebungen für $\delta(2)$, $\delta(9)$ und $\delta(10)$. Für $\delta(6)$ und $\delta(7)$ werden andererseits Änderungen in entgegengesetzter Richtung beobachtet (Abb. 2).

¹⁵⁾ K. N. Scott, J. Amer. Chem. Soc. 94, 8564 (1972).

¹⁶⁾ R. Pugmire, D. M. Grant, M. J. Robins und R. K. Robins, J. Amer. Chem. Soc. 91, 6381 (1969).

¹⁷⁾ R. J. Pugmire und D. M. Grant, J. Amer. Chem. Soc. 93, 1880 (1971); eine vortreffliche Literaturübersicht gibt J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York 1972, Kap IV.

¹⁸⁾ E. Breitmaier und K. H. Spohn, Tetrahedron 29, 1145 (1973).

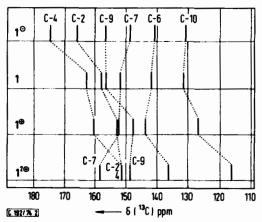


Abb. 2. Graphische Darstellung der ¹³C-Resonanzen in den Ionen des Pterins

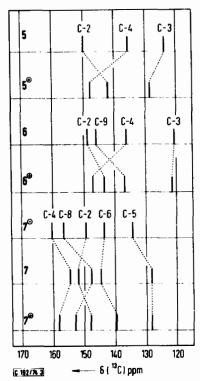


Abb. 3. Graphische Darstellung der ¹³C-Resonanzen in den Ionen von 5¹⁴), 6¹⁸⁾ und 7¹⁷⁾

Die Zweitprotonierung in FSO₃H führt dann zu weiteren starken Abschirmungen für C-10 und C-4, aber auch die Resonanz von C-6 wird jetzt deutlich nach hohem Feld verschoben. Dagegen wird C-7 entschirmt; $\delta(2)$ und $\delta(9)$ ändern sich nur wenig (Abb. 2). Diese Beobachtungen sind nach den zitierten Befunden 14.16–18) nur mit

einer Zweitprotonierung an N-5 vereinbar, ein Ergebnis, das der Deutung von Müller und v. Philipsborn, die kürzlich unabhängig über die ¹³C-NMR-Spektren von Pteridinen berichteten¹³⁾, widerspricht¹⁹⁾. Die genannten Autoren nehmen Zweitprotonierung an N-8 an und stützen sich dabei auf Resultate von Dieffenbacher und v. Philipsborn5), die aufgrund ¹H-NMR-spektroskopischer Untersuchungen auf eine derartige Struktur des Dikations 120 geschlossen hatten. Dabei wurde als Modell für die Beeinflussung der Protonenresonanz bei Stickstoffprotonierung das 1-Methylimidazol 20) benutzt und aus der Tatsache, daß C(7)-H bei der Protonierung von 1[®] stärker entschirmt wird als C(6)-H auf N-8-Protonierung geschlossen. Andererseits ist jedoch bekannt, daß bei der Protonierung von Pyridin die α-Protonen am wenigsten beeinflußt werden ($\Delta \delta_{\alpha} = 0.357$, $\Delta \delta_{\beta} = 1.073$, $\Delta \delta_{\gamma} = 1.206$), da, wie Gil und Murrell²¹⁾ gezeigt haben, der entschirmende Beitrag der magnetischen Anisotropie des Stickstoffs zur \(\alpha\)-Protonenresonanz im Pyridinkation entfällt. Auch im 1-Methylimidazol wird C(4)-H weniger stark entschirmt als C(5)-H 20). Somit sind auch die ¹H-NMR-spektroskopischen Befunde mit einer Zweitprotonierung an N-5 besser vereinbar.

Neben den spezifischen Verschiebungen der ¹³C-Resonanzen stützen insbesondere die ¹³C, ¹H-Kopplungskonstanten ¹³) die von uns vorgeschlagene Struktur des Dikations 1² (vgl. Schema 1). Während der Anstieg der unmittelbaren Kopplungen über eine Bindung lediglich anzeigt, daß das zweite Proton im Pyrazinring von 1[®] eintritt, werden für die geminalen und die vicinalen Kopplungskonstanten unterschiedliche Änderungen beobachtet, die es gestatten, den Ort der Protonierung festzulegen. Die relevanten Daten ¹³) sind in Tab. 2 nochmals zusammengestellt.

Tab. 2. Geminale und vicinale ¹³ C, ¹ H-Kopplungskonstanten (in Hz)	in
1 \oplus und 12 \oplus sowie 2 \oplus und 22 \oplus nach l. c. 13)	

J(13C,1H)	1⊕	12⊕	2⊕	22⊕
(6, 7)	10	15	11	12
(7,6)	10	5	11	5
(9,7)	12	12	13	13
(10,6)	10	5	8	5

Betrachten wir zunächst die geminalen Konstanten ${}^2J(C^7,H^6)$ und ${}^2J(C^6,H^7)$. Im Monokation betragen beide 10 Hz. Zweitprotonierung läßt ${}^2J(C^6,H^7)$ auf 15 Hz ansteigen, während ${}^2J(C^7,H^6)$ auf 5 Hz absinkt. Diese Änderungen lassen sich auf der Basis der *Pople-Bothner-By*-Theorie für geminale Kopplungskonstanten ${}^{22)}$ verstehen, wenn man Protonierung an N-5 annimmt. Dazu betrachten wir die drei Molekülfragmente 8, 9 und 10. Der Anstieg von ${}^2J({}^{13}C,{}^{1}H)$ beim Übergang vom Benzol $(1.0 \text{ Hz}){}^{23)}$ zum Pyrazinfragment in 1^{\oplus} ist eine Folge des induktiven Ladungs-

¹⁹⁾ Die von diesen Autoren gemessenen δ -Werte für die Kationen von 1 und 2 stimmen mit unseren Daten gut überein. In der Zuordnung differieren wir lediglich in der Reihenfolge $\delta(2) < \delta(4)$, für die Müller und v. Philipsborn die umgekehrte Sequenz annehmen.

²⁰⁾ G. B. Barlin und T. J. Batterham, J. Chem. Soc. B 1967, 516.

²¹⁾ V. M. S. Gil und J. N. Murrell, Trans. Faraday Soc. 60, 248 (1964).

²²⁾ J. A. Pople und A. A. Bothner-By, J. Chem. Phys. 42, 1339 (1965).

²³⁾ F. J. Weigert und J. D. Roberts, J. Amer. Chem. Soc. 89, 2967 (1967).

transfers von den Orbitalen des $H_{\alpha}-C_{\beta}-C_{\gamma}$ -Fragments zum Stickstoff und des hyperkonjugativen Ladungstransfers in umgekehrter Richtung. Bei der Protonierung von **9** wird der hyperkonjugative Ladungstransfer unterbunden, die Kopplungskonstante (H_{α}, C_{γ}) muß abnehmen. Gleichzeitig kann die für $^2J(C^6, H^7)$ beobachtete Zunahme auf die mit der Protonierung von N-5 einhergehende mesomere Positivierung von N-8 zurückgeführt werden. Verminderte π -Ladung verstärkt den induktiven Effekt, ohne den hyperkonjugativen zu unterbinden.

Experimentelle Daten, die unsere Interpretation unterstützen, sind von Pyridin und Nicotinamid (11) bekannt. Verglichen mit Benzol steigt ²J(C³,H²) im Pyridin auf 8.47 Hz an ²⁴), und *Birdsall* und Mitarbb. ¹² fanden bei der Protonierung des Nicotinamids folgende Änderungen der geminalen Kopplungskonstanten

Neben den geminalen zeigen auch die vicinalen Kopplungskonstanten beim Übergang zum Dikation $1^{2\oplus}$ Änderungen, die eine Zweitprotonierung an N-5 nahelegen. So nimmt ${}^3J(C^{10},H^6)$ von 12 auf 5 Hz (in konz. Schwefelsäure) ab, während ${}^3J(C^9,H^7)$ sich nicht ändert. In Übereinstimmung damit werden ${}^3J(C^2,H^6)$ und ${}^3J(C^6,H^2)$ im Nicotinamid 11 bei Protonierung von 11.0 auf 6.2 bzw. von 10.6 auf 6.7 Hz reduziert, während der Betrag von ${}^3J(C^3,H^5)$ konstant bleibt (6.5 Hz).

Die Struktur der Pterin-Ionen kann danach in folgendem Schema zusammengefaßt werden:

In ganz analoger Weise wie bei 1 geben die chemischen Verschiebungen der ¹³C-Resonanzen (Abb. 4 und Tab. 1) und die Kopplungskonstanten ¹³) auch über die Struktur der Lumazin-Ionen Auskunft. Hier konnten wegen fehlender Modellsubstanzen die Frequenzen für das Neutralmolekül nicht abgeleitet werden. Beim Über-

²⁴⁾ M. Hansen und H. J. Jakobsen, J. Magn. Resonance 10, 74 (1973).

gang vom Dianion zum Monokation werden Hochfeldverschiebungen für C-4, C-2 und C-9 beobachtet, also für Kohlenstoffatome, die dem Ort der Protonierung (N-1, N-3 9,25) benachbart sind. Besonders C-2 wird hier, im Einklang mit der Erwartung, stark abgeschirmt. Bei Protonierung des Monokations werden dann C-6 und C-10 abgeschirmt, während δ (7) nach tieferem Feld wandert. Auch für dieses Dikation nehmen wir daher Protonierung an N-1 bzw. O-2 und N-5 an 26).

Für 3 finden wir in FSO₃H praktisch die gleichen Resonanzfrequenzen wie für 1², so daß die Annahme, daß hier ein Dikation 3² analoger Struktur, d. h. an N-1 und N-5 protoniert, vorgelegen hat, gerechtfertigt ist.

Für 4 weist schließlich der Gang der chemischen Verschiebungen vom Anion über das Monokation zum Dikation (Abb. 4) deutlich auf die Protonierungsfolge N-3, N-1, N-5, die zusätzlich durch die für das Dikation gemessenen Kopplungskonstanten gestützt wird. Hier fanden wir die in Tab. 3 zusammengestellten Werte, die dem unentkoppelten Spektrum direkt entnommen wurden (Analyse 1. Ordnung).

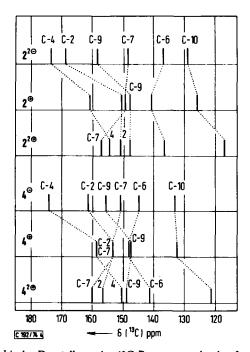


Abb. 4. Graphische Darstellung der ¹³C-Resonanzen in den Ionen von 2 und 4

Unsere Vorstellungen über die Struktur der Ionen von 2, 3 und 4 sind nochmals im folgenden Formelschema zusammengefaßt:

²⁵⁾ W. Pfleiderer, Chem. Ber. 90, 2582 (1957).

²⁶⁾ Die Frage, ob N- oder O-Protonierung eintritt, läßt sich aufgrund unserer Messungen nicht entscheiden. Bei O-Protonierung wäre zusätzlich cis-trans-Isomerie denkbar. Diese diffizile Strukturfrage wäre gesondert zu untersuchen.

Schema 2

Neben C-10 wird in den Verbindungen 1, 2 und 4 bei der Zweitprotonierung auch C-4 beträchtlich abgeschirmt. Ob das als Hinweis auf eine Wasserstoffbrücken-Bindung zum Sauerstoff an C-4 oder ein Tautomerie-Gleichgewicht zwischen O- und N-protonierter Form interpretiert werden darf ²⁷⁾, muß vorläufig noch offen bleiben.

Tab. 3. ¹³C, ¹H-Kopplungskonstanten (in Hz, exp. Fehler ± 1.2 Hz) in 4²

WINC HILL	219	(6,6)	(7,7)	
J(13C,1H):	219	206	207	
² J (¹³ C, ¹ H):	(6,7)	(7,6)		
J(13C,1H):	12	6		
³ J (13C,1H):	(4,2	(9,2)	(9,7)	(10,6)
J(13C,1H):	7	10	13	7

B) Theoretische Überlegungen

Die Ursachen für die chemische Verschiebung der 13 C-Resonanz in Stickstoff-Heterocyclen und ihren Ionen sind von *Grant* und Mitarbb. $^{14.17)}$ eingehend diskutiert worden. Nach der *Karplus-Pople-*Theorie $^{28)}$ gehen in den dominierenden paramagnetischen Beitrag σ_p zur Abschirmung des 13 C-Kerns im wesentlichen drei Größen ein: 1) Die Elektronenanregungsenergie ΔE , 2) der effektive mittlere Radius $\langle r \rangle_{2p}$ des Kohlenstoff- 2p -Orbitals, und 3) die Summe der Bindungsordnungen P_{AB} der vom betreffenden Kohlenstoffatom A ausgehenden Valenzen. Vereinfacht ergibt sich folgende Beziehung

$$\sigma_{\rm p}^{\rm A} \propto -\Delta E^{-1} \langle r^{-3} \rangle_{\rm 2p} \sum P_{\rm AB}$$
 (1)

Während die Effekte 2) und 3) am betrachteten 13 C-Kern lokalisiert und im Rahmen der HMO-Theorie über die Ladungsdichte Q_{π} und die freie Valenz F_{A} erfaßt werden können, bezieht sich der ΔE -Term auf im Magnetfeld angeregte Elektronenübergänge, vornehmlich σ, π^* -Übergänge sowie auch n, π^* -Übergänge an benachbarten Heteroatomen (O, N, S).

Gl. (1) erklärt die bekannte Abhängigkeit der ¹³C-Resonanzfrequenz von der π -Ladungsdichte Q_{π}^{29} , zeigt jedoch auch, daß dies nicht der einzige bestimmende Faktor

²⁷⁾ Y. Inone und D. D. Perrin, J. Chem. Soc. 1962, 2600.

²⁸⁾ M. Karplus und J. A. Pople, J. Chem. Phys. 38, 2803 (1963).

²⁹⁾ H. Spiesecke und W. G. Schneider, Tetrahedron Lett. 1961, 468.

ist. Besonders die bei der Protonierung des Pyridins gefundenen $\Delta\delta$ -Werte (vgl. S. 3278) lassen sich allein mit dem $\langle r^{-3}\rangle_{2p}$ -Term nicht verstehen. Während *Pugmire* und *Grant* ¹⁴⁾ für die Abschirmung der α -Kohlenstoffatome, die dabei beobachtet wird, zunächst Änderungen der Bindungsordnungen verantwortlich machten, zeigte eine spätere Untersuchung ³⁰⁾, daß statt dessen die Änderung der Anregungsenergie ΔE ausschlaggebend sein dürfte. Dafür spricht auch die starke Abschirmung, die schon früher für die ¹⁴N-Resonanz im protonierten Pyridin gefunden wurde ($\Delta\sigma = 113 \text{ ppm}$) ³¹⁾ und die als Folge der Blockierung des n, π^* -Überganges gesehen werden muß.

Es liegt daher nahe, auch bei den Pteridinen die gefundenen Protonierungs-Verschiebungen für die α -ständigen Kohlenstoffatome der Änderung im ΔE -Term zuzuschreiben. Im Einklang damit zeigen nach Tab. 4 die UV-Spektren der Pteridine bei Protonierung in der Regel eine hypsochrome Verschiebung ihrer längstwelligen Bande. HMO-Rechnungen lassen erkennen, daß weder Änderungen der Ladungsdichte noch der Freien Valenz die Abschirmung der α -Kohlenstoffkerne erklären können. So erhält man, um nur ein Beispiel zu nennen, für den Übergang $\mathbf{1}^{\odot} \rightarrow \mathbf{1}^{\odot}$ in 2- und 9-Position $\Delta Q_{\pi} = -0.206$ bzw. -0.087 und $\Delta F_{\mathbf{A}} = +0.069$ bzw. +0.071. Beide Effekte verringern daher $\sigma_{\mathbf{p}}$ und sollten, wären sie ausschlaggebend, eine Tieffeldverschiebung bewirken, die jedoch nicht beobachtet wird.

Tab. 4. UV-Daten einiger Pteridine in alkalischer, neutraler und saurer wäßriger Lösung

	Ionisierung	λ _{max} (nm)	Lit.	
1	_	251, 360	7)	
	0	233, 270, 339		
	+	229, 242, 314		
2		253, 368	9),25)	
	_	235, 270, 347		
	0	228, 325		
	+	240, 343		
4	_	242, 333	32)	
	+	257, 303		
Xanthopterin		255, 275, 394	27)	
•	0	276, 388		
	+	245, 355		

Befriedigende Korrelationen zwischen 13 C-NMR-Daten und der π -Ladungsdichte in ungesättigten Systemen, wie wir sie z. B. bei den Oxepinen 33) oder Diazanaphthalinen 33 erhielten, können nach den oben angestellten Überlegungen nur erwartet werden, wenn ΔE - und $\Sigma P_{\rm AB}$ -Terme in der betrachteten Verbindungsreihe keine signifikanten Änderungen zeigen. Die größeren Abweichungen, die wir für die $\delta(^{13}{\rm C})/Q_{\pi}$ -Korrelationen bei den Pteridinen und ihren Anionen gefunden haben 33 lassen daher vermuten, daß diese Bedingung hier nicht mehr gut erfüllt war. Die Bedeutung

 ³⁰⁾ A. J. Jones, D. M. Grant, J. G. Russell und G. Fraenkel, J. Phys. Chem. 73, 1624 (1969).
31) J. D. Baldeschwieler und E. W. Randall, Proc. Chem. Soc. 1961, 303.

³²⁾ D. J. Brown und S. F. Mason, J. Chem. Soc. 1956, 3443.

³³⁾ H. Günther und G. Jikeli, Chem. Ber. 106, 1863 (1973).

des ΔE-Terms für die chemische Verschiebung der ¹³C-Resonanzfrequenz, die nach unserer Meinung vielfach unterschätzt wird, haben kürzlich auch *Kalinowski* und *Kessler* ³⁴⁾ demonstriert ³⁵⁾.

Der Deutschen Forschungsgemeinschaft danken wir für eine großzügige Sachspende.

Experimenteller Teil

Die verwendeten Substanzen waren Handelspräparate (1: Fa. Schuchardt, München; 2 und 3: EGA-Chemie, Steinheim; 4: Aldrich Chem. Co., Milwaukee, USA).

Für die Aufnahme der 13 C-Spektren wurden die Substanzen in 2 N H_2SO_4 (20% D_2SO_4), Trifluoressigsäure und Fluorsulfonsäure gelöst. Bei Messungen mit Trifluoressigsäure oder Fluorsulfonsäure als Lösungsmittel diente die 2 H-Resonanz von D_2O , das sich in einer im Probenraum zentrierten Kapillare befand, als Stabilisierungssignal. Die Lösungen waren 0.2-0.5 M. Als Standard diente in allen Fällen die 13 C-Resonanz von externem Dioxan. Die ermittelten Resonanzfrequenzen wurden mit δ_{TMS} (Dioxan) = 67.4 ppm auf die δ_{TMS} -Skala umgerechnet; auf Suszeptibilitätskorrekturen wurde verzichtet.

Die Spektren wurden mit einem Bruker-HX-90-Spektrometer im Puls-Fourier-Transform-Verfahren bei 22.628 MHz registriert. Die Protonen wurden breitband-entkoppelt.

Zur Spektrenakkumulation diente ein Nicolet-Computer, Typ 1083. Vor allem bei nichtentkoppelten Spektren mußten bis zu 65000 Impulsspektren akkumuliert werden.

[192/74]

³⁴⁾ H.-O. Kalinowski und H. Kessler, Angew. Chem. 86, 43 (1974); Angew. Chem., Int. Ed. Engl. 13, 90 (1974).

³⁵⁾ Vgl. auch: G. B. Savitzky, K. Nan:ikawa und G. Zwiefel, J. Phys. Chem. 69, 3105 (1965); D. H. Marr und J. B. Stothers, Can. J. Chem. 45, 225 (1967); R. Waack, L. D. McKeever und M. A. Doran, J. C. S. Chem. Commun. 1969, 117; T. Tokuhiro und G. Fraenkel, J. Amer. Chem. Soc. 91, 5005 (1969); A. R. Quirt, J. R. Lyerla Jr., I. R. Peat, J. S. Cohen, W. F. Reynolds und M. H. Freedman, J. Amer. Chem. Soc. 16, 570 (1974).